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A numerical method is used to describe the angular amplitude and phase
responses of non-saturation limited parametric arrays especially within the interaction
region of the arrays. Far"eld expression of the primary waves are employed in the
method to approximate the primary "elds. It is shown that the obtained numerical
results are in close agreement with available experimental results both in far"eld
region and within the Rayleigh distance. ( 1999 Academic Press
1. INTRODUCTION

A closed-form analytical solution is formulated to describe the far"eld angular
amplitude and phase responses of an absorption-limited parametric array in
a previous paper [1]. Most practical parametric systems, however, work at such
frequencies that most secondary signals are generated outside the Rayleigh
distance. Moreover, some observation points are only a short distance away from
the interaction region of a parametric array, or, on occasion, measurements can
only be made within the interaction region due to some practical constraint. In all
these cases, the analytical approach will not provide accurate predictions of the
secondary "elds. One solution to this problem is to numerically evaluate a
three-dimensional integration which describes the secondary "eld for a given
primary source. In this paper, a numerical solution is used to predict both angular
amplitude and phase responses of parametric arrays not only in the far"eld region,
but also in the region well within the Rayleigh distance.

A number of authors have dealt with the three-dimensional integration for
parametric arrays. Muir and Willette [2] employed a numerical integration
approach to describe the pressure "eld of the sum and di!erence frequency in the
far "eld of a circular piston source. Here the two primary waves are assumed to be
spreading spherically from the source point and the position vector is treated with
the exact law of cosine expression. It is straightforward to generalize the method to
describe secondary "eld of any arbitrary source shape. Berktay and Leahy [3]
presented a simpli"ed three-dimensional integration which is more suitable for
general far"eld problems. Their results are expressed as normalized curves and
a simpli"ed equation which can be used for the design of far"eld parametric arrays.
0022-460X/99/460177#21 $30.00/0 ( 1999 Academic Press



178 M. ZHENG AND L.S. WANG
Fenlon [4] discussed a model based on the one-dimensional Burgers' equation
and presented a quasi-plane three-dimensional equation that reduces to Burgers'
equation in one dimension. This accounts for the di!raction e!ects due to
spherically spreading primary waves, and he showed that the second order
perturbation solution of this equation is in the form of a three-dimensional
scattering integral similar to Westervelt's scattering integral. Moreover, a theoretical
model that predicts the di!erence frequency pressure within the interaction region
of a parametric array is given by Rolleigh [5]. Here, both linear and non-linear
absorptions are neglected and it is assumed that the primary waves are spherically
spreading throughout the interaction region. It is shown that with these
assumptions the three-dimensional scattering integral can be reduced to a single
integral if the primary pressure "eld is axially symmetrical. Mellen and Mo!et
made much more e!orts to tackle the problem [6}10]. Mellen [6], "rstly, introduced
a numerical contour integration method to calculate the near"eld beam pattern of
exponentially shaded end-"re-line arrays. Then he used the method to compute the
near"eld axial secondary source levels of two exponentially shaded end-"re arrays
of "nite cross-section: a plane-collimated cylindrical array and a spherically
divergent conical array [7]; and also calculate the near"eld beam pattern of
continuous end-"re line arrays with an arbitrary amplitude shading [8]. In
addition, Mellen and Mo!et [9], presented the near"eld di!erence frequency waves
in a triple integral which resulted from a transformation of the original integral to
avoid the problem of a highly oscillating integrand. Later, the triple integral,
applicable to saturation-limited as well as absorption-limited sources, was
programmed for digital computation [10].

Although considerable research has been devoted to the evaluation of the
three-dimensional integration both analytically and numerically, rather less
attention has been paid to phase information (or arrival time) of the secondary
waves in the solutions. Furthermore, the most favourable approach developed by
Mellen and Mo!et [9], employed a quite complicated transformation to obtain
a new triple integral, which cannot readily be applied to di!erent applications.
Therefore, a straightforward numerical approach is used here to evaluate the
three-dimensional integral which includes both amplitude and phase information.

Numerical solutions can provide good descriptions of the secondary "eld in
the near "eld where there is considerable di!erence between analytic solutions
and experimental results. For example, a parametric beamwidth narrower than
Westervelt's theoretical prediction was frequently observed in many previous
experiments by Bellin and Beyer [11], Hobvk [12], Zverov and Kalachev [13],
Berktay and Smith [14], and Smith [15]. There are three possible causes of such
a phenomenon. One explanation, put forward by Naze and Tj+tta [16] and
Berktay [17], was that the &&aperture e!ect''must be taken into consideration when
estimating the directivity pattern of the di!erence frequency waves in which the
interaction region is substantially limited to the near "eld of the projector by the
rate of absorption of the primary waves. However, only some experimental results
can be explained by the inclusion of this aperture factor, for example, Bellin
and Beyer's experiment [11], while other results need further explanations.
Smith's experimental results [15], showed that the measured di!erence frequency
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beamwidth was narrower than the estimated value even if the aperture e!ect is
included. The second explanation is that the observer is not su$ciently far from the
interaction region. Berktay and Shooter [18], showed that the beam patterns
within the near"eld region can be narrower than the far"eld beam patterns. The
"nal reason may be attributed to the amplitude and phase #uctuations within the
Fresnel region of a projector as pointed out by Smith [15] and Mo!ett and Mellen
[19]. However, no theoretical work has been carried to ascertain this because of the
complicated near"eld characteristics. It remains unclear whether the #uctuations
will make the di!erence frequency beam pattern broader or narrower.

In this paper, the parametric interaction process is treated in a quasi-linear
manner, e!ects due to higher order interactions being neglected. Then the di!erence
frequency source function is evaluated using Westervelt's treatment. Radiation
from such sources is calculated as a scattering integral. A three-dimensional
numerical integration is introduced for arbitrary spherically spreading primaries
and both amplitude and phase information have been retained. Finally, a
straightforward approach has been employed to perform the three-dimensional
integration. The numerical solution is applied to a number of cases where
experimental results are available. Very favourable results are obtained for all the
cases.

2. THEORY

In the present analysis, all the assumptions of Westervelt's treatment are
invoked. That is (1) the interaction occurs in a perfect #uid in which the e!ects of
viscosity and heat conduction are neglected. However, the attenuation of the
primary "eld is introduced in the ad hoc manner of Westervelt in order to avoid
the on-axis singularity and (2) the #uid is homogeneous. Therefore, the secondary
sound generated by a parametric array can be given by the following
three-dimensional scattering integral,
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Figure 1. Geometry of spherical co-ordinates (P: Observation point; P@: source point).
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angular frequencies of u
1

and u
2
, h@ and u@ are source point polar and azimuth

angles, respectively, and D
1,2

(h, u) is the normalized directivity function at the two
primary frequencies. It should be pointed out that equations (2) and (3) describe
only the far "eld of a source where the directivity function D is only a function of
angles. The geometry is shown in Figure 1.

The source density function for the secondary wave at the di!erence frequency
which results from interaction of the two primary waves, can be expressed by
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Substituting equation (4) into equation (1), gives
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where a
d
is the absorption coe$cient at the di!erence frequency. The modulus and

argument of the complex integration represent the amplitude and phase responses
of a parametric array respectively.
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Finally, the integral in equation (5) is expressed in spherical polar co-ordinates
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Here r is the distance between source point and observation point, p is the angle
between source point vector r@ and observation point vector R.

The three-dimensional integration in equation (6) covers the whole space. In
practice, the range of integration is taken only from the origin to the "eld point R.
Since the scattering source decays exponentially, its contribution to the "eld point
beyond R is negligible. Also, the upper limit on h@ integration is taken to an e!ective
angle h@

e
covering the major concentration of primary wave radiation, namely to the

angle of the "rst-side lobe.
It should be noted that the description of the primary waves by equations (2) and

(3) are not accurate within the Rayleigh distance, where the primary "elds resemble
more plane waves than spherical waves. However, Rolleigh [5] proved that the
error introduced by approximating these collimated plane waves by spherical
waves inside the Rayleigh distance R

r
at the primary frequency is negligible if the

observation point is slightly beyond R
r
.

The calculation of the three-dimensional integral is accomplished in the
MATLAB environment. The "rst integration is performed by using MATLAB's
intrinsic function TRAPZ where the trapezoidal method is used. There are more
advanced methods such as QUAD, using adaptive recursive Simpson's rule and
QUAD8, using adaptive recursive Newton Cotes 8 panel rule, in MATLAB.
However, when there is a highly oscillating integrand, tests indicate that the
trapezoidal method has a much better performance than either adaptive recursive
Simpson's routine or adaptive recursive Newton Cotes 8 panel procedure. Thus, the
trapezoidal method has been chosen for the "rst integration. For the second and
third integrations, the Simpson's rule [20] is applied. It is found that the suggested
method for the three-dimensional numerical integration has good convergence.
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3. EXPERIMENTAL AND NUMERICAL RESULTS

Rolleigh [21] pointed out that there were controversial results concerning the
di!erence frequency beamwidth of parametric arrays. For instance, Rolleigh's
results show a decrease in di!erence frequency beamwidth as the observation
distance increases. Berkaty's results [22], however, indicated that the di!erence
frequency beamwidth increased with an increasing measurement range. Rolleigh
attributed this &&discrepancy'' to a limitation of the Berktay model which is valid
only when the observation point is outside the interaction region.

In order to reconcile the results, the angular responses at di!erent ranges were
investigated for both absorption-limited and spreading-loss-limited parametric
arrays using the numerical approach. The results are compared with experimental
data to demonstrate the capability of the numerical method.

3.1. CASE 1

Some preliminary experiments were performed in a laboratory tank [1]. A
circular transducer with a 30 mm diameter and a resonance frequency of 2)54 MHz,
was employed, which was mounted on a tilt mechanism to allow angle adjustment
in the vertical plane. The observation distance is 7)8 m away from the transducer.
The acoustic power was kept at a maximum signal-to-noise ratio but below the
saturation limit [23]. The angular amplitude and phase responses are measured at
two secondary frequencies, 270 and 410 kHz.

Figures 2 and 3 show the measured secondary wave as a function of time and
angle with respect to the axis at 270 and 410 kHz respectively. One can see from
these "gures that, in addition to the expected reduction in amplitude there is a time
delay in the secondary signal when observation point is away from the axis.

It is interesting to compare the experimental results with the theoretical results
given by the analytical solution given in reference [1]. Figures 4 and 5 show the
corresponding analytical results. One can observe clearly that there is a greater
o!-axis phase delay in the theoretical results in comparison with that of the
experimental results. For a better comparison, individual relative amplitudes
and phase shifts at di!erent o!-axis angles are also shown in Figures 6 and 7
respectively.

It can be seen that there are some discrepancies between the experimental and
analytical results both for amplitudes and phases. For the phase shifts, as the o!-axis
angle increases, more disagreements between experimental and analytical results
occur. For amplitude responses, analytical curves have a more #at appearance at
small o!-axis angles, by comparison with the experimental curves which exhibit
almost triangular shapes. This phenomenon was also observed by Mo!et and Mellen
[19] at a large down-shift ratio. The reason for these discrepancies may be attributed
to two reasons. Firstly, in the present parametric transduction the length of the
virtual array R

v
"1/2a

0
"2)8 m, and the Rayleigh distance R

r
"S/j

c
"

na2f
c
/c

0
"1)2 m. Therefore, R

v
'R

r
and their values are not comparably close.

Apparently, this is a spreading-loss-limited parametric array, therefore the analytical
solution, only suitable for absorption-limited arrays, are not applicable. Secondly, the



Figure 2. Parametric o!-axis experimental result ( f
c
"2)54 MHz, f

d
"270 kHz).

Figure 3. Parametric o!-axis experimental result ( f
c
"2)54 MHz, f

d
"410 kHz).
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measurement distance R
m

is only 7)8 m away from the primary transducer, so the
assumption of R

m
AR

v
, which is used to achieve analytical results, cannot be

su$ciently satis"ed.
To solve the above problem, the three-dimensional integral in equation (6)

has been evaluated numerically for this case. The sound pressure at the primary
frequencies was selected to produce an acoustic power just less than 10 W to avoid
saturation. The normalized results are shown in Figures 6 and 7. It can be seen that



Figure 4. Parametric o!-axis analytical result ( f
c
"2)54 MHz, f

d
"270 kHz).

Figure 5. Parametric o!-axis analytical result ( f
c
"2)54 MHz, f

d
"410 kHz).
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there are good agreements between the numerical results and the experimental data
for both amplitudes and phases at frequencies of 270 and 410 kHz respectively.

3.2. CASE 2

The parametric transduction process became absorption-limited when the primary
frequency was doubled with the same experimental set-up in the previous case. The



Figure 6. Angular amplitude and phase responses at 7)8 m from the source at 270 kHz. (a) , Analytic;
, Experiment; , 3D-numeric. (b) , Analytic; , Experiment; *, 3-D numeric.

Figure 7. Angular amplitude and phase responses at 7)8 m from the source at 410 kHz. (a) , Analytic;
, Experiment; , 3-D numeric. (b) , Analytic; , Experiment; *, 3-D numeric.
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experimental results of angular amplitude and phase responses in this case are
presented in Figures 8 and 9 for a primary frequency of 6)2 MHz and a di!erence
frequency of 270 kHz at ranges of 0)4, 1)5 and 7)5 m respectively. In Figures 8 and 9,
numerical reults are also plotted. It can be seen that there are good agreements
between numerical integration results and experimental data, especially at the range
of 7)5 m where excellent agreements are achieved.

It is shown in Figure 8 that, for the amplitude response, the beam pattern becomes
narrower as the observation distance is getting closer to the projector. This trend can
be seen in Figure 10 as well. For example, the 3 dB beamwidth is about 73 at 7)5 m,
and only 2)73 at 0)4 m, which is just above one-third of the beamwidth of the former.
Moreover, if the measurement point is moved closer to the projector, then there is



Figure 8. Parametric angular amplitude responses (a) , 3-D numeric; , Exp 0)4 m. (b) , 3-D
numeric; , Exp 1)5 m. (c) , 3-D numeric; , Exp 7)5 m.
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a range below which the beamwidth of the di!erence frequency increases. This 3-D
numerical result con"rms Vestrheim and Hobvk's experimental result [24]. In their
experiment, the two primary waves with frequencies of 17)68 and 16)68 MHz are
radiated from a planar, circular quartz source with an e!ective radius of 6)5 mm.
They observed a minimum beamwidth at about 20 cm from the projector.

From Figure 9, it can be seen that the o!-axis phase shift increases slightly with the
observation distances.

The phenomenon of a narrowing beam pattern at shorter ranges, was also
observed by Merklinger [25], but no explanation was given in his thesis. Later,
Berktay [22], tried to explain this phenomenon by using a second order approximation
for the range vector between the scattering and observation points. It appears that,
at reasonably long ranges within the near "eld, Berktay's theory can explain the



Figure 9. Parametric angular phase responses (a) , 3-D numeric; , Exp 0)4 m. (b) , 3-D
numeric; , Exp 1)5 m. (c) , 3-D numeric; , Exp 7)5 m.
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narrower beam pattern phenomenon. For example, in Merklinger's case, at a range
of 1)7 m for a source with a primary frequency centred at 8)75 MHz and a di!erence
frequency of 1)1 MHz and also Smith's case [15], at a range of 5 m for a source with
a primary frequency of 3 MHz and di!erence frequencies between 100 and 500 kHz.
However, at much shorter ranges, his theory does not explain the rapid narrowing
of the beams.

Here, an attempt is made to solve the above problem by use of three-dimensional
numerical integration. The integral is applied to Merklinger's case, where a 1 cm
square transducer was used to generate a centre primary frequency of 8)75 MHz
and a di!erence frequency of 1)1 MHz, the parametric array has Rayleigh distance
R

r
"0)58 m and virtual array distance R

v
"0)27 m. The beam pattern at di!erent

ranges is compared with the numerical prediction in Figure 11. The 3 dB beam width
of the parametric array is plotted against the numerical result in Figure 12. It can be



Figure 10. Parametric 3 dB beamwidth at di!erent ranges ( f
c
"6)2 MHz, f

d
"270 kHz). (a) } } },

Analytic; , Exp; , 3D-numeric.
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clearly seen that there are good agreements between the 3-D numerical results and
the experimental results, even for the very short ranges such as 0)25 and 0)625 m.
This again con"rms the validity of the three-dimensional integral solution.

One may conclude that when observation ranges decrease, the beam patterns
of absorption-limited arrays become narrower. However, at very close vicinity of
a parametric source, there is a minimum beamwidth range within which the beam
width, on the contrary, increases.

3.3. CASE 3

To further check the phase shifts of parametric arrays, a lower frequency
parametric array was investigated in a quarry at Tamworth, England. A transducer,
150 mm]150 mm square piezoelectric ceramic plate with a 300 kHz thickness
mode resonant frequency, was used to generate primary waves. In this experiment,
the transducer was "xed in a pan and tilt system which is capable of rotating the
array by $103 in the vertical plane and $303 in the horizontal plane. The pan and
tilt unit was driven by stepper motors which were remotely operated via a personal
computer. A compass and inclinometer, attached to the transducer mounting frame
were employed to monitor the orientation of the transmit transducer.

To measure the phase shift, a primary centre frequency of 315 kHz and di!erence
frequency of 50 kHz were used. Measurements were performed over a range of
125 m. From the parameters provided, the parametric array has virtual array
distance R

v
"163 m and a Rayleigh distance R

r
"5)0 m, since R

v
<R

r
, the source

strictly belongs to a spreading-loss-limited parametric array. Consequently, the
analytical closed-form formula cannot be applied to this case.



Figure 11. Near"eld beam patterns of a parametric array at di!erent ranges (Experimental data from
Merklinger [25]). (a) , 3-D numeric (spheric); , Exp (0)25 m). (b) , 3-D numeric (spheric);

, Exp (0)625 m). (c) , 3-D numeric (spheric); , Exp (1 m). (d) , 3-D numeric (spheric);
, Exp (1)5 m).
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For comparison purposes, the experimental results as well as the numerical
results for amplitude and phase responses at ranges of 7 and 125 m are shown in
Figures 13 and 14 respectively.

It should be pointed out that there is a small side lobe at a positive angle in
Figure 14. This is because of the interference of the surface re#ected multi-path at
a large o!-axis angle. A simple geometric calculation con"rmed the existence of the
surface re#ected multi-path.

From Figures 13 and 14 it can be observed that the numerical results agree
well with the experimental data both for amplitude and phase responses. The 3 dB
beamwidth versus range is shown in Figure 15, which, again, o!ers a good
agreement between the measured and predicted results.



Figure 12. 3 dB beamwidth of the parametric array at di!erent ranges (Experimental data from
Merklinger [25]). } } }, Analytic; , Exp; , 3-D numeric.

Figure 13. Comparison between experimental and 3-D numerical results of amplitude response
(a) , Num (7 m); , Exp (7 m). (b) , Num (125 m); , Exp (125 m).
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To illustrate the method further, the frequently cited experimental data given by
Muir and Willette [2], which has not been theoretically analyzed, have also been
compared with the 3-D numerical integration results,. In their experiment, a 3-in.-
diameter piston projector was used to generate a centre primary frequency of
450 kHz and a di!erence frequency of 64 kHz in a fresh-water lake. The 3 dB
beamwidths at di!erent ranges are shown in Figure 16, from which it can be seen
that there is, in general, a good agreement between the numerical and experimental



Figure 14. Comparison between experimental and 3-D numerical results of phase response (a) ,
Num (7 m); , Exp (7 m). (b) , Num (125 m); , Exp (125 m).

Figure 15. 3-dB beamwidth at di!erent ranges. , 3-D numeric; , Experiment.
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results. It can also be seen that as the measurement range decreases the beam width
becomes wider. Furthermore, as the observation point is very close to the projector,
the beamwidth will be much wider than that would be expected in the far "eld.

It is worth noticing that spreading-loss-limited parametric arrays develop their
narrow beam feature early in the interaction process. At ranges just beyond the
Rayleigh distance the beamwidth almost reaches the far"eld value. The reason for
this may be attributed to the exponentially shading characteristics of the parametric
scattering sources. Their near"eld beamwidths, therefore, approach the far"eld
value with an exponential range dependence.



Figure 16. 3-dB beamwidth at di!erent ranges. , 3-D numeric; , Experiment.
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4. EVALUATION OF THE APPROXIMATIONS USED IN ANALYTIC
SOLUTIONS FOR PARAMETRIC ARRAYS

In order to obtain closed-form solutions to parametric arrays, some approximations
have to be made to the position vector r. The exact equation for the position vector
r is presented in equation (9). The most frequently used approximations are the "rst
and the second order approximations by Westervelt and Berktay. In Westervelt's
approximation [26], the position vector r is simpli"ed by

r"R!r@ cosp, (11)

while in Berktay's approximation [22], the position vector r is expressed by

r"R!r@ cosp#(r@2/2R) sin2p. (12)

It is interesting to examine the e!ects of these two approximations against the
exact expression in the three-dimensional integral with the numerical method in
section 2.

The "rst case to be examined is the parametric array discussed in section 3.2.
This array has a primary frequency of 6)2 MHz and a di!erence frequency of
270 kHz. The numerical results of angular amplitude responses for di!erent
approaches as well as experimental results are shown in Figure 17 at ranges of 0)4,
1)5 and 7)5 m respectively. Figure 18 also shows the 3 dB beamwidth for the
di!erent methods as well as experimental results.

From Figures 17 and 18, it can be seen that at a long range which is about 10 times
of virtual array distance both Westervelt and Berktay approximations lead to a good



Figure 17. Parametric angular amplitude responses (a: 0)4 m, b: 1)5 m, c: 7)5 m). (a) , 3-D numeric;
, Exp 0)4 m; , 3-D (Westervelt approx.); , 3-D (Berktay approx.). (b) , 3-D numeric;
, Exp 1)5 m; , 3-D (Westervelt approx.); , 3-D (Berktay approx.). (c) , 3-D numeric;
, Exp 7)5 m; , 3-D (Westervelt approx.); , 3-D (Berktay approx.).
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agreement with 3-D numerical integration of the exact position vector or experimental
results. Here the virtual array distance R

v
"0)46 m. As the observation distance

decreases, the Berktay's approximation provides better results than that of
Westervelt's, but it still exhibits some discrepancies from the experimental results
and the exact numerical solution. That is, the predicted beam patterns using
Westervelt and Berktay's approximations are wider than those measured. When
observation points are closer to the projector, more errors are introduced.

It should be stated that the above comparison results show us the limitation of
Berktay's theoretical approach in dealing with the rapid narrowing of beams at
shorter ranges in Merklinger's experiment [25]. This can be further con"rmed by
checking Merklinger's case, where a centre primary frequency of 8)75 MHz was used
to generate a di!erence frequency of 1)1 MHz. The numerical results using di!erent



Figure 18. 3-dB beamwidth at di!erent ranges. } } }, Analytic; , Exp; *, 3-D numeric; ,
Westervelt approx.; , Berktay approx. ).

Figure 19. Parametric near"eld beam patterns, (a) , 3-D numeric; , Exp 0)25 m; , 3-D
(Westervelt approx.); , 3-D (Berktay approx.). (b) , 3-D numeric; , Exp 0)625 m; , 3-D
(Westervelt approx.); , 3-D (Berktay approx.). (c) , 3-D numeric; , Exp 1 m; , 3-D
(Westervelt approx.); , 3-D (Berktay approx.). (d) , 3-D numeric; , Exp 1)5 m; , 3-D
(Westervelt approx.); , 3-D (Berktay approx.).
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Figure 20. 3 dB beamwidth at di!erent ranges. } } }, Analytic; , Exp; , 3-D numeric; ,
Westervelt approx.; , Berktay approx.).
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vectors as well as experimental results are shown in Figure 19 at ranges of 0)25,
0)625, 1 and 1)5 m respectively. The 3 dB beamwidth of di!erence frequency is also
presented in Figure 20.

From Figure 20, it can be observed that at a range of 1)7 m Berktay's approximation
provides good agreement with the experimental data as well as the 3-D numerical
integration results. At a range of 1 m Berktay's approximation shows a slight
departure from the experimental data and at a range of 0)625 m more deviation is
exhibited.

Clearly, it is the exact position vector solution, rather than Berktay's approximation,
that provides a good prediction of amplitude angular responses both in the far and
near "eld of absorption-limited parametric arrays. Only at some distance from the
interaction region Berktay's or Westervelt's approximations can be used to predict
angular amplitude responses.

5. CONCLUSIONS

A numerical method for the secondary "eld as a three-dimensional integral has
been developed and used to provide accurate evaluations on the angular amplitude
and phase responses of non-saturation-limited parametric arrays both in near and
far"eld regions. The experiments and numerical predictions have shown that, for
absorption-limited parametric arrays in the far "eld, the beamwidth at the di!erence
frequency reduces when the measurement range decreases. As the observation point
moves closer to the projector, there is a range at which a minimum beamwidth is
achieved, below this range the beamwidth increases again. However, for spreading-
loss-limited parametric arrays, as the observation distance decreases, the beamwidth
of the di!erence frequency monotonically increases. Further examination of the
frequently used position vectors revealed that, the failure to explain the rapid
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narrowing of the beam at shorter ranges for absorption-limited parametric arrays is
due to the approximations which are not suitable for the very near "eld.
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